
Optimal medical therapy

DMSc, Ass.Prof., Yasmin Rustamova, FESC Vice-President of Azerbaijan Society of Cardiology

No disclosures

Revasc or not revasc

Highlights

- Why to revascularize?
- Physiological targets for revascularization
- Is viability the way to improve prognosis?
- Or what do we know about viability?

What are the goals of revasc?

- Symptomatic (eg angina, HF symptoms)
- Prognostic (survival, HF hospitalisations,...)

Risk - benefit

Successful revascularization

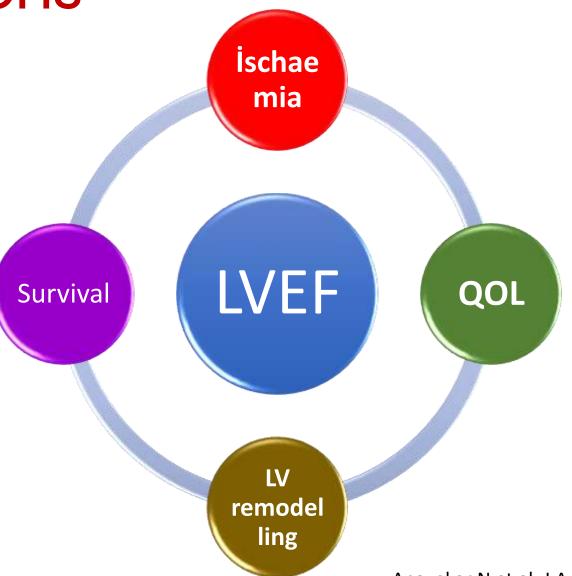
Right dominance

Weighting Factor

16


15

Left dominance


12.5

- ✓ Coronary anatomy
- **✓**LVEF
- ✓Ischemia
- √ Viability
- ✓ Comorbidity

Expectations

Anavekar N et al. J Am Coll Cardiol 2016;67:2874–87

Physiological targets of revasc

Dyfunctional, but viable

2018 ESC/EACTS Guidelines on myocardial revascularization

The Task Force on myocardial revascularization of the European Society of Cardiology (ESC) and European Association for Cardio-Thoracic Surgery (EACTS)

Developed with the special contribution of the European Association for Percutaneous Cardiovascular Interventions (EAPCI)

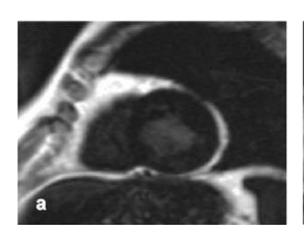
Recommendations on revascularizations in patients with chronic heart failure and systolic left ventricular dysfunction (ejection fraction \leq 35%)

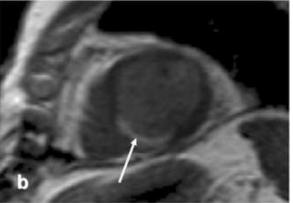
Recommendations	Classa	Levelb
In patients with severe LV systolic dysfunction and coronary artery disease suitable for intervention, myocardial revascularization is recommended. ^{81,250}	ı	В
CABG is recommended as the first revas- cularization strategy choice in patients with multivessel disease and acceptable surgical risk. ^{68,81,248,255}	1	В

What the guidelines say?

In patients with one- or two-vessel dis- ease, PCI should be considered as an alternative to CABG when complete revascularization can be achieved.	lla	с
In patients with three-vessel disease, PCI should be considered based on the evaluation by the Heart Team of the patient's coronary anatomy, the expected completeness of revascularization, diabetes status, and comorbidities.	lla	c
LV aneurysmectomy during CABG should be considered in patients with NYHA class III/IV, large LV aneurysm, large thrombus formation, or if the aneurysm is the origin of arrhythmias.	lla	с
Surgical ventricular restoration during CABG may be considered in selected patients treated in centres with expertise. 252-254,256,257	ШЬ	В

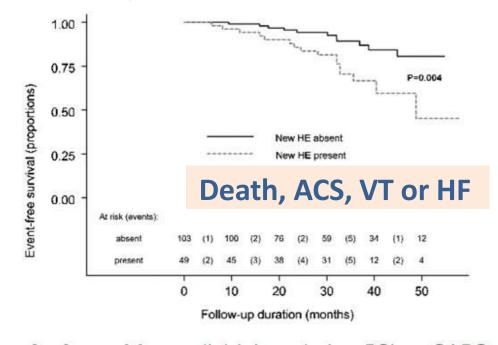
ESC Guidelines: for Revascularisation & for Heart Failure

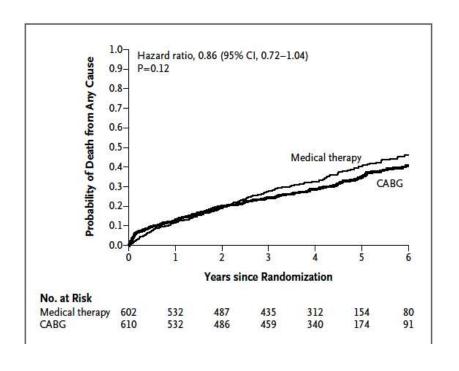

Heart Failure 2021		100000000000000000000000000000000000000				ularisatio			
CABG should be considered as the first-choice revascularization strategy, in patients suitable for surgery, especially if they have diabetes and for those with multivessel disease. 581,587,588,590	lla	В			tion and coro intervention, recommende	75 05 77	uitable for	1	В
Coronary revascularization should be considered to relieve persistent symptoms of angina (or an angina-equivalent) in patients with HFrEF, CCS,	lla	С			CABG is rec cularization with multiv surgical rich	n strategy e in p	atients eptable	II.	В
and coronary anatomy suitable for revasculariza- tion, despite OMT including anti-anginal drugs.					ease, PCI sh	with one- or two-ves	as an alter-	lla	c
In LVAD candidates needing coronary revascula- rization, CABG should be avoided, if possible.	lla	С			revascularia	ABG when complete zation can be achieve	ed.		
Coronary revascularization may be considered to improve outcomes in patients with HFrEF, CCS, and coronary anatomy suitable for revascularization, after careful evaluation of the individual risk to benefit ratio, including coronary	ШЬ	c			should be of ation by the coronary a pleteness of	with three-vessel dis- considered based on e Heart Team of the natomy, the expected f revascularization, d comorbidities.	the evalu- patient's d com-	lla	с
anatomy (i.e. proximal stenosis >90% of large vessels, stenosis of left main or proximal LAD), comorbidities, life expectancy, and patient's		B?		Class I	Evidence and/or general agreement that a given treatment or procedure is beneficial, useful, effective.	is recommended or is indicated	hould be lass III/ us for-	lla	e
perspectives.				Class II	Conflicting evidence and/or a divergence efficacy of the given treatment or proced		gin of		
PCI may be considered as an alternative to CABG, based on Heart Team evaluation, consid-				Class Ita	Weight of evidence/opinion is in favour of usefulness/efficacy.	Should be considered	ng CABG		
ering coronary anatomy, comorbidities, and sur-	ПР	С	ØESC 2021	Class IIb	Usefulness/efficacy is less well established by evidence/opinion.	May be considered	ents 2-254,	ШЬ	В
gical risk.			0	Class III	Evidence or general agreement that the given treatment or procedure is not useful/effective, and in some cases may be harmful.	is not recommended			

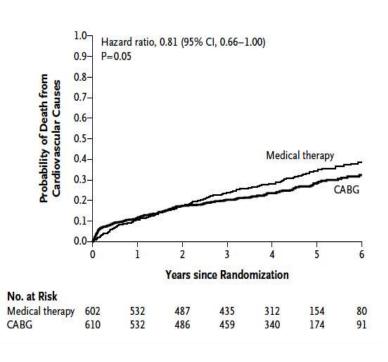

latrogenic Myocardial

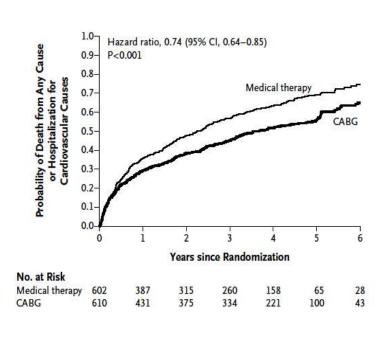
Infarction (CABG / PCL = just a controlled myocard

(CABG / PCI – just a controlled myocardial infarction?)


- How Common?
 - 32%
- Does it matter?
 - Three-fold increase in adverse events

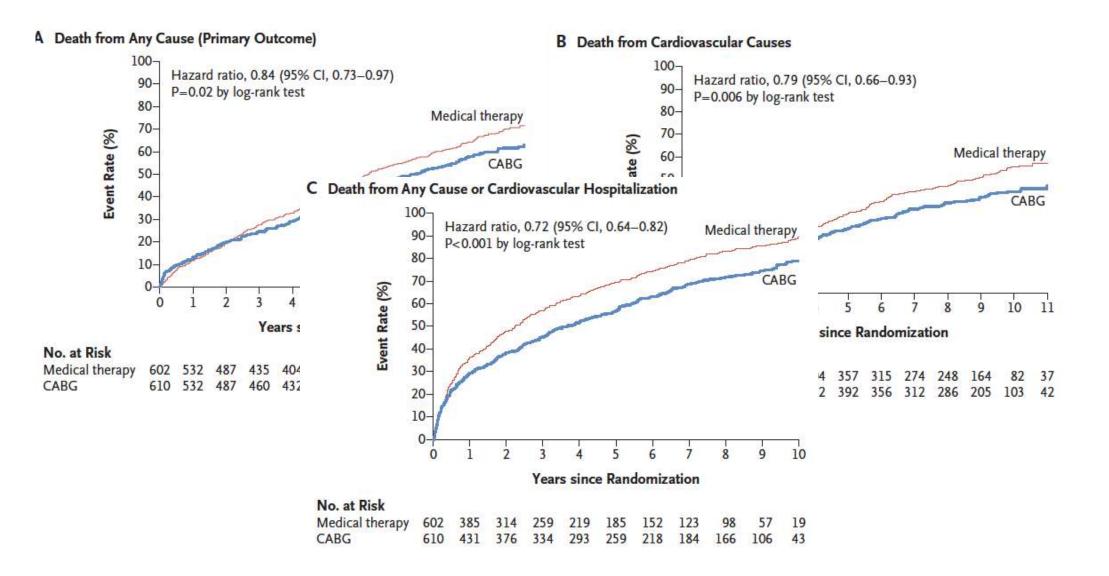

Prognostic value of coronary revascularisationrelated myocardial injury: a cardiac magnetic resonance imaging study


K Rahimi, A P Banning, A S H Cheng, T J Pegg, T D Karamitsos, K M Channon, Darby, D P Taggart, S Neubauer, B S Selvanayagam

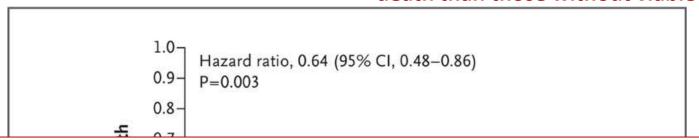


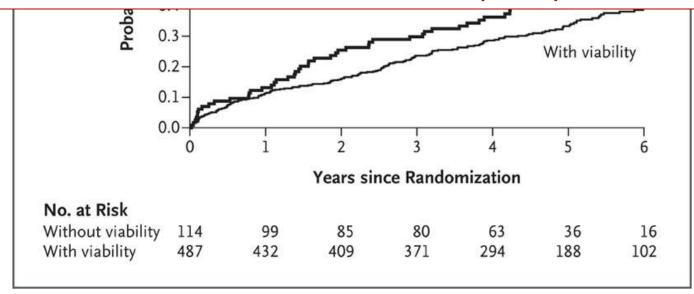

Conclusions: Myocardial injury during PCI or CABG, identified by DE-CMR, adversely affects clinical outcome. This suggests the benefits from revascularisation could partially be offset by new myocardial injury caused by the intervention itself.

Improvement of Prognosis - STICH



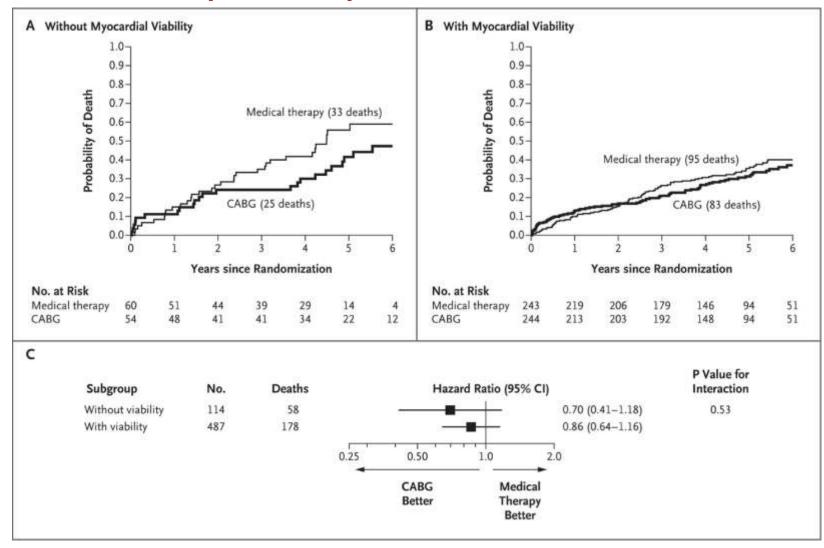
Revascularization by CABG is superior to optimal medical therapy


Improvement of Prognosis - STICHES

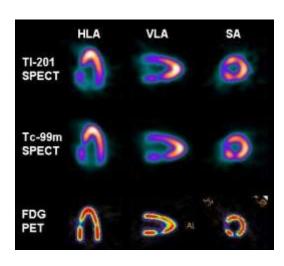

STICH: Myocardial Viability Sub-study

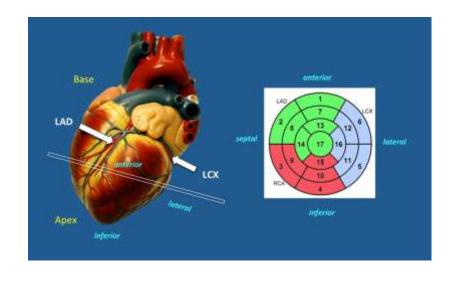
Kaplan-Meier Analysis of the Probability of Death, According to Myocardial
Viability Status

Patients with viable myocardium had lower overall rates of death than those without viable myocardium



However, after adjustment for other significant baseline prognostic variables in a multivariable model, the prespecified viability status was no longer significantly associated with the rate of death (P=0.21)

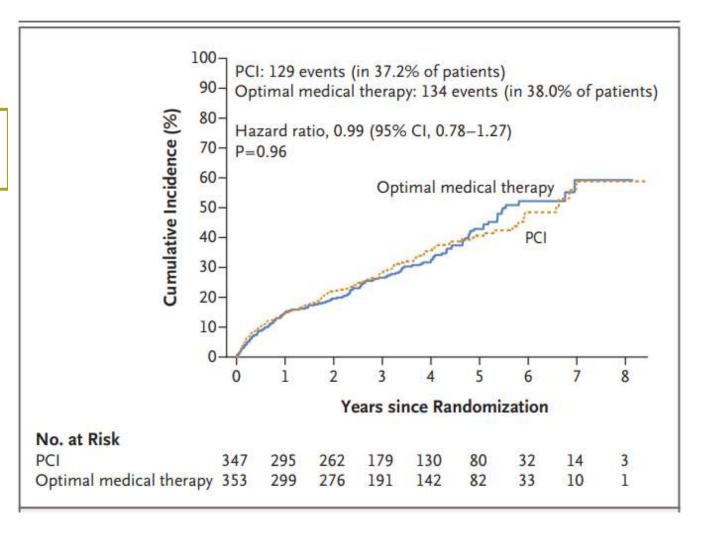

STICH: Myocardial Viability Sub-study



STICH viability tests

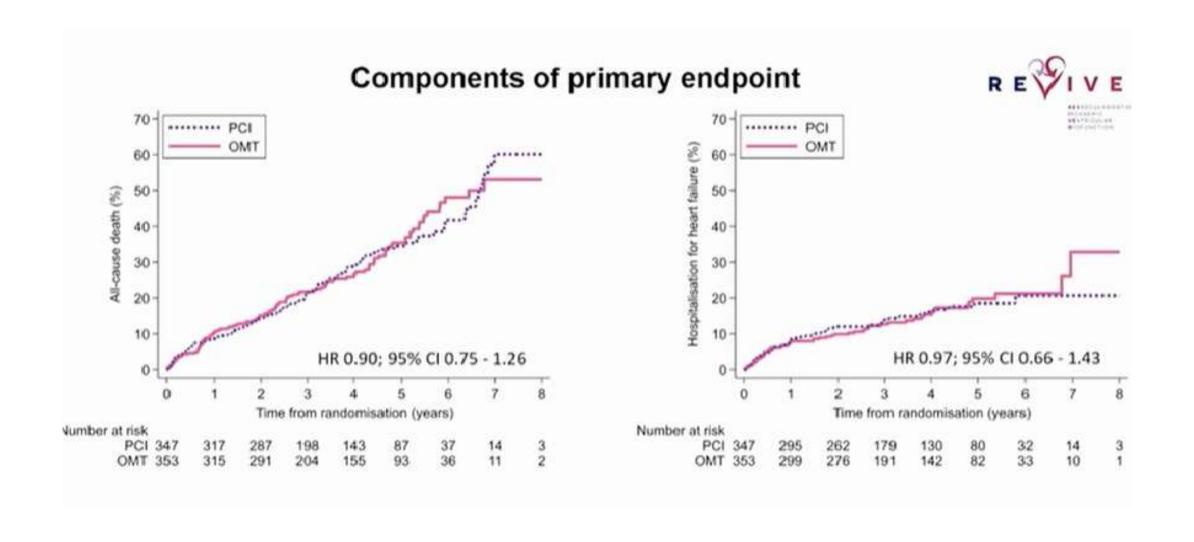
SPECT

Dobutamine
Stressechocardiography



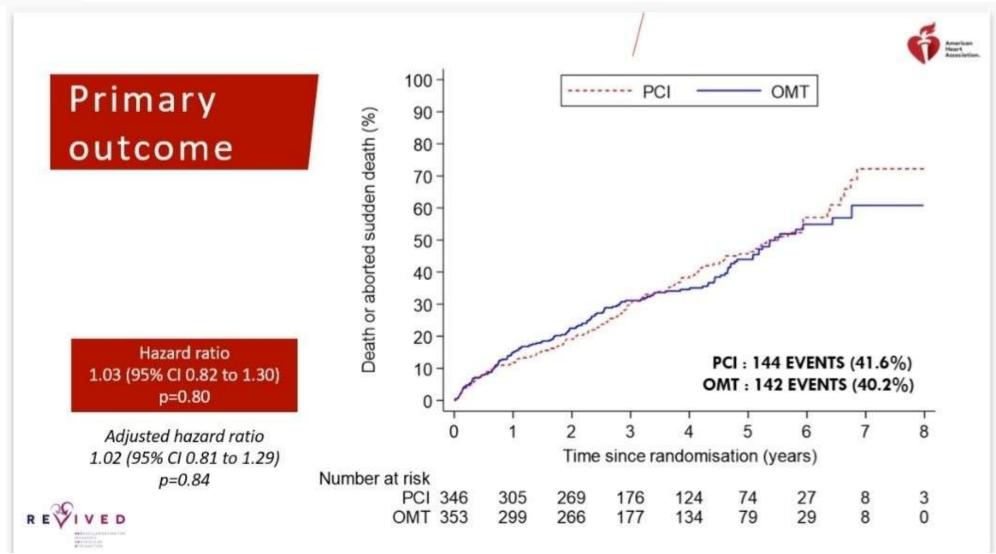
Revasc for Ischemic ventricular dysfunction (REVIVED trial)

Primary Endpoint

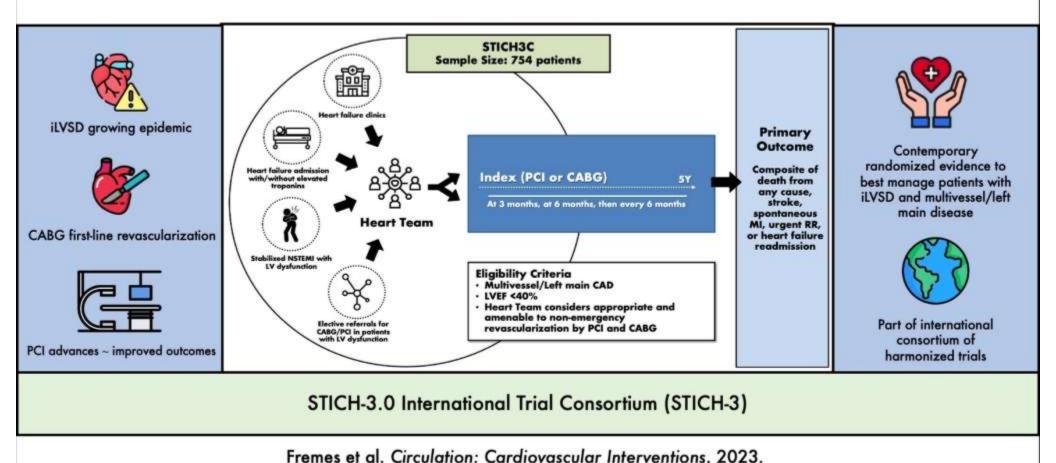


129 Events (37.2%)

134 Events (38.0%)


Hazard Ratio 0.99 95% CI 0.78 - 1.27 p=0.96

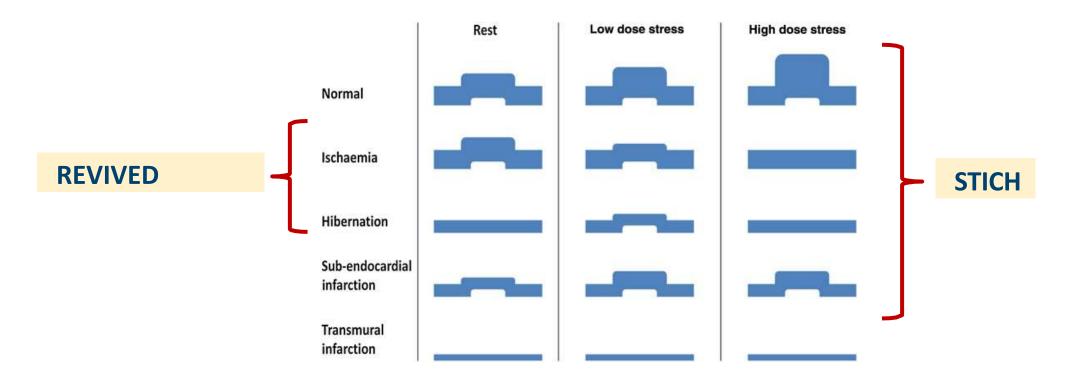
REVIVED: RCT on PCI versus OMT in CHF



Arrhythmia-Reduction

Upcoming RCTs – STICH-3

The Canadian CABG or PCI in Patients with Ischemic Cardiomyopathy Trial (STICH3C):
Rationale and Study Protocol


rremes et al. Circulation. Caralovascular interventions. 2023.

Differing Definitions of Viability

Clinical update

Taxonomy of segmental myocardial systolic dysfunction

Adam K. McDiarmid¹, Pierpaolo Pellicori², John G. Cleland², and Sven Plein^{1*}

Coronary revascularization for patients with heart failure and coronary artery disease: a systematic review and meta-analysis of randomized trials

Search

PubMed, Ovid, Cochrane Central Register of Controlled Trials (CENTRAL)

From 1st January 2001 to 22nd November 2022

Trials

5 RCTs 2,842 patients

Mean age (range): 60 to 70 years; 85 % men

Intervention

Medical therapy

VS

Revascularization PCI CABG

Medical therapy

Findings: All-cause mortality

201	No.			
510 398	8/602	62.1%	***	0.84(0.73;0.97)
59 2:	5/69	3.1%		1.17(0.62;2.22)
14 21	/184	3.3%	-	0.84(0.45;1.57)
10 69	/184	12.3%		0.89(0.64;1.23)
347 115	5/353	19.1%	-	0.98(0.76;1.27)
	59 25 14 21 10 69	59 25/69 14 21/184 10 69/184	59 25/69 3.1% 14 21/184 3.3% 10 69/184 12.3%	59 25/69 3.1% 14 21/184 3.3% 10 69/184 12.3%

Test for Heterogeneity NOT significant

<-----Favours Inv

Conclusions

For patients with chronic HF and CAD enrolled in RCTs, the effect of coronary revascularization on all-cause mortality was, on average, modest (hazard ratio 0.88) and not robust (upper 95% CI close to 1.00).

HR

Favours Con---->

Panel A: All-cause mortality

7(0.73;0.97) 7(0.62;2.22) 1(0.45;1.57)
(0 45-1 57)
(0.45;1.57)
(0.64;1.23)
3(0.76;1.27)

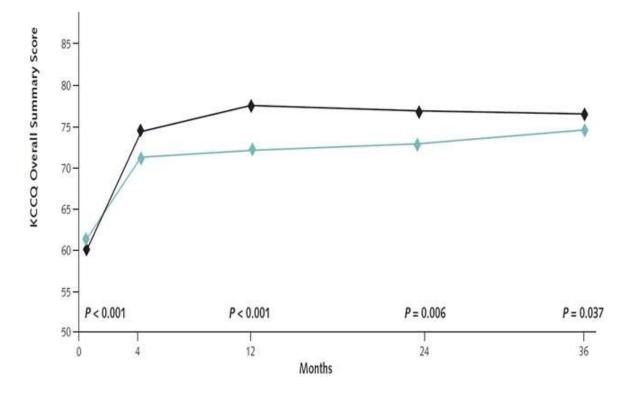
Panel B: Cardiovascular mortality

	Invasive Ev./Tot.	Control Ev./Tot.	Weight		HR (95% CI)
STICHES 2016	247/610	297/602	75.1%	144	0.79(0.67;0.93)
ISCHEMIA 2020	14/214	19/184	4.1%		0.69(0.34;1.39)
REVIVED 2022	76/347	88/353	20.8%	-	0.88(0.65;1.20)
RE Model for All Studie	es: Q = 0.55, df	= 2, p = 0.7	58; I ² = 0.0%	6	0.80(0.70;0.93)
		<	-Favours In	0.30 1.00 W HR	3.00 Favours Con>

NB: trials could not be blinded.

This may influence endpoints requiring adjudication.

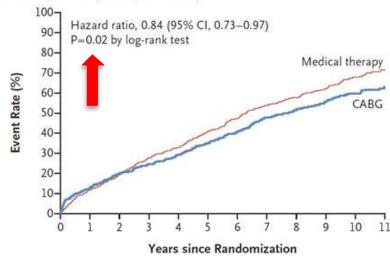
Panel C: Hospitalization for heart failure or all-cause mortality


	Invasive Ev./Tot.	Control Ev./Tot.	Weight		HR (95% CI)
STICHES 2016	404/610	450/602	62.3%	paq.	0.81(0.71;0.93)
ISCHEMIA 2020	25/214	27/184	7.8%	-	0.88(0.51;1.52)
REVIVED 2022	129/347	134/353	30.0%	-	0.99(0.77;1.27)
RE Model for All Studio	es: Q = 1.92, df	= 2, p = 0.3		.30 1.00	0.87(0.74;1.01)
		<	-Favours Inv	HR	Favours Con>

Panel D: Hospitalization for heart failure

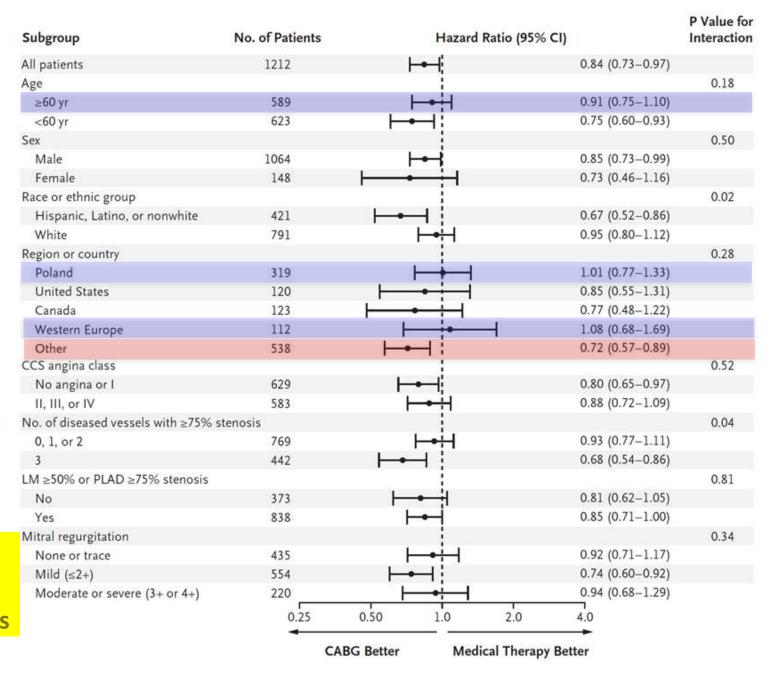
	Invasive Ev./Tot.	Control Ev./Tot.	Weight		HR (95% CI)
STICHES 2016	157/610	201/602	61.1%		0.71(0.57;0.89)
ISCHEMIA 2020	8/214	9/184	6.8%		0.91(0.35;2.39)
REVIVED 2022	51/347	54/353	32.1%	-	0.97(0.66;1.43)
RE Model for All Studies	: Q = 1.97, df = 2	2, p = 0.374;	$I^2 = 25.6\%$		0.80(0.62;1.03)
			Favou		ours Con>

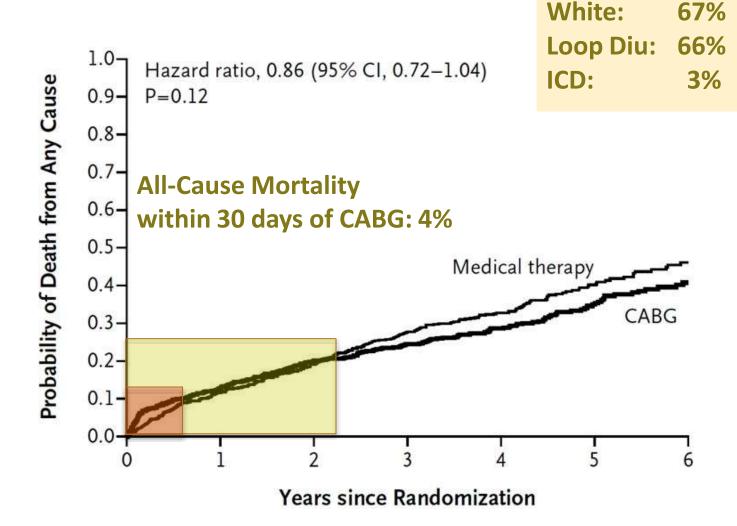
STICH Trial


Some improvement in quality of life
No improvement in symptoms other than angina
No improvement in exercise capacity
No improvement in left ventricular function

STICHES: NEJM 2016

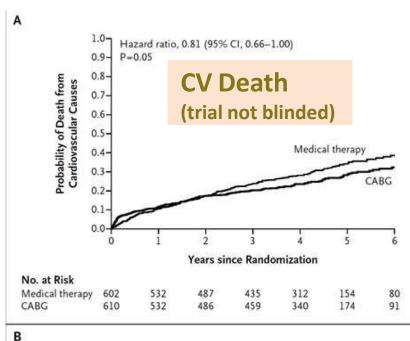
No adjustment for multiple 'looks'

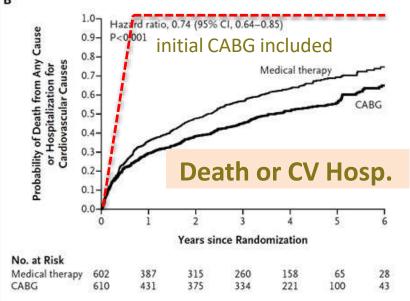

A Death from Any Cause (Primary Outcome)


No. at Risk Medical therapy 602 532 487 435 404 357 315 274 248 164 82 37 CABG 610 532 487 460 432 392 356 312 286 205 103 42

Small benefit: for 100 CABG -

- 4 peri-operative deaths
- After 10 years, CABG will have made no difference to the outcome of 90 patients

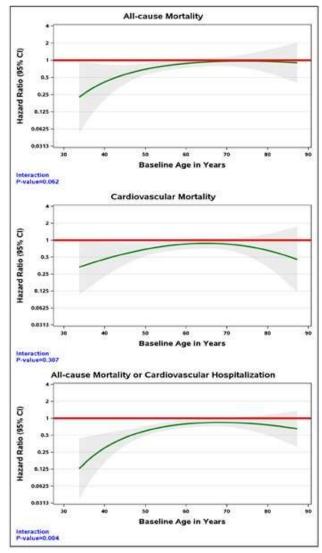

STICH: NEJM 2011

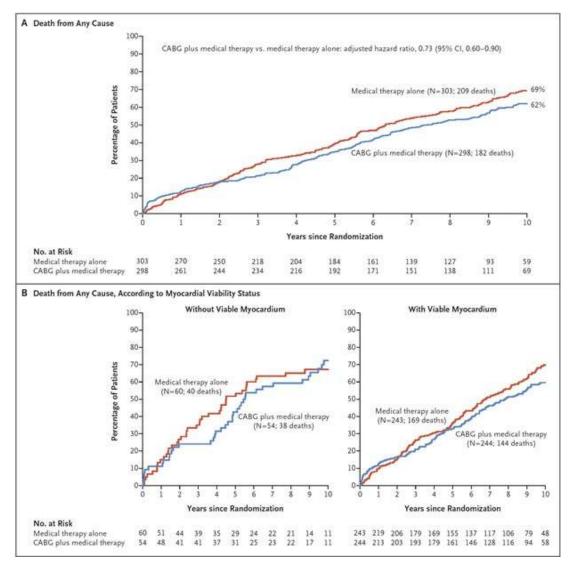


Age: (median) 60 yrs

12%

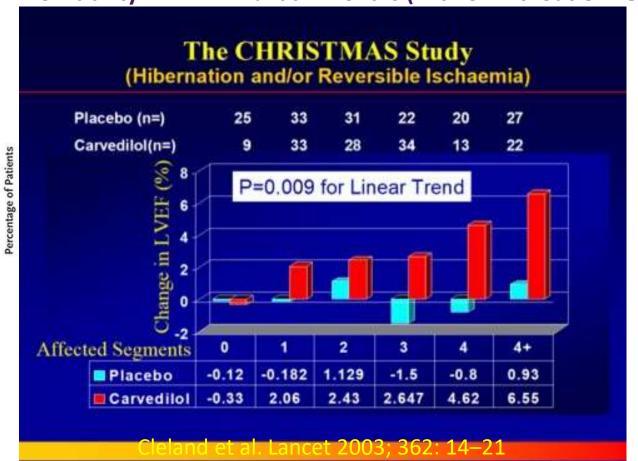
Women:





STICHES

You must live a long time to benefit from CABG. Patients with HFrEF aged >55 years might not.



STICHES: Myocardial Viability Sub-study

Paired LVEF

- Viability LVEF↑ ~2% at 4 months (with or without CABG)
- No viability LVEF **№** 1% at 4 months (with or without CABG)

N Engl J Med 2019;381:739-48. DOI: 10.1056/NEJMoa1807365

Conclusions

- No good evidence that revascularization (anatomical) of chronic 'stable' coronary artery disease improves outcome whether or not
 - LVEF is Reduced
 - Myocardial viability / ischaemia
 - Diagnosis of Heart Failure
- Most patients with heart failure
 - Are aged >70 years
 - Patients with heart failure are at high risk bad things happen to them

Future

Maybe - Functional revascularization